E-ISSN: 2564-7571
 

ISSN 2564-7474

Current Issue Archive Popular Article Articles in Press Online Submission
SCImago Journal & Country Rank
 
  Search





GAN as a generative architectural plan layout tool: A case study for training DCGAN with Palladian Plans, and evaluation of DCGAN outputs [ITU J Faculty Arch]
ITU J Faculty Arch. Ahead of Print: ITUJFA-54037 | DOI: 10.5505/itujfa.2020.54037  

GAN as a generative architectural plan layout tool: A case study for training DCGAN with Palladian Plans, and evaluation of DCGAN outputs

Can Uzun1, Meryem Birgül Çolakoğlu1, Arda Inceoğlu2
1Department of Architecture, Faculty of Architecture, Istanbul Technical University, Istanbul, Turkey
2Department of Computer and Informatics Engineering, Faculty of Computer and Informatics Engineering, Istanbul Technical University, Istanbul, Turkey

This study aims to produce Andrea Palladio’s architectural plan schemes autonomously with generative adversarial networks(GAN), and to evaluate the plan drawing productions of GAN as a generative plan layout tool. GAN is a class of deep neural nets which is a generative model. In deep learning models, repetitive processes can be automated. Architectural drawing is a repetitive process in the act of architecture and plan drawing process can be made automated. For the automation of plan production system we used deep convolutional generative adversarial network (DCGAN) which is a subset of GAN models. And we evaluated the outputs of the DCGAN Palladian Plan scheme productions. Results show that not geometric similarities (shapes), but probabilistic models are at the centre of the generative system of GAN. For this reason, it should be kept in mind that while GAN algorithms are used as a generative system, they will produce statistically close visual models rather than geometrically close models. Nonetheless, GAN can generate both statistically and geometrically close models to the dataset. In first section we introduced a brief description about the place of the drawing in architecture field and future foresight of architecture drawings. In the second section, we gave detailed information about the literature on autonomous plan drawing systems. In the following sections, we explained the methodology of this study and the process of creating the plan drawing dataset, the algorithm training procedure, at the end we evaluated the generated plan schemes with rapid scene categorization and Frechet inception score.

Keywords: Andrea Palladio, Artificial intelligence (AI), GAN, Plan generator, Generative system.




Corresponding Author: Can Uzun, Türkiye


TOOLS
Uncorrected Full Text PDF
Print
Download citation
RIS
EndNote
BibTex
Medlars
Procite
Reference Manager
Share with email
Share
Send email to author

Similar articles
PubMed
Google Scholar
 (59 accesses)
 (71 downloaded)




 
Copyright © 2020 A|Z ITU Journal of Faculty of Architectur All Rights Reserved & ITU Rectorate
LookUs & Online Makale